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To reduce the human efforts in neural network design, Neural
Architecture Search (NAS) has been applied with remarkable
success to various high-level vision tasks such as classifica-
tion and semantic segmentation. The underlying idea for NAS
algorithm is straightforward, namely, to allow the network the
ability to choose among a set of operations (e.g.,convolution
with different filter size), one is able to find an optimal archi-
tecture that is better adapted to the problem in hand. However,
so far the success of NAS has not been enjoyed by low-level
geometric vision tasks such as stereo matching. This is partly
due to the fact that state-of-the-art deep stereo matching net-
works, designed by humans, are already sheer in size. Directly
applying the NAS to such massive structures is computation-
ally prohibitive based on the currently available mainstream
computing resources. In this paper, we propose the first end-
to-end hierarchical NAS framework for deep stereo matching
by incorporating task-specific human knowledge into the neu-
ral architecture search framework. Specifically, following the
gold standard pipeline for deep stereo matching (ie.,feature
extraction – feature volume construction and dense matching),
we optimize the architectures of the entire pipeline jointly. In
addition, our method significantly reduces the neural search
space, which subsequently improves the interpretability of
the resulting network. Extensive experiments show that our
searched network outperforms all state-of-the-art deep stereo
matching architectures and is ranked at the top 1 accuracy
on KITTI stereo 2012, 2015 and Middlebury benchmarks,
as well as the top 1 on SceneFlow dataset with a substan-
tial improvement on the size of the network and the speed of
inference.

1 Introduction
Stereo matching attempts to find dense correspondences

between a pair of rectified stereo images and estimate a dense
disparity map. Being a classic vision problem, stereo match-
ing has been extensively studied for almost half a century [1].
Since MC-CNN [2], a large number of deep neural network
architectures [3, 4, 5, 6] have been proposed for solving the
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Fig. 1: Our proposed method, LEAStereo (Learning Effective Ar-
chitecture Stereo), sets a new state-of-the-art on the KITTI 2015 test
dataset with much fewer parameters and significantly faster.

stereo matching problem. Based on the adopted network struc-
tures, existing deep stereo networks can be roughly classified
into two categories: I. direct regression and II. volumetric
methods.

Direct regression methods are based on direct regression
of dense per-pixel disparity from the input images, without
taking into account the geometric constraints in stereo match-
ing [7]. In the majority of cases, this is achieved by employing



large U-shape encoder-decoder networks with 2D convolu-
tions to infer the disparity map. While enjoying a fully data-
driven approach, recent studies raise some concerns about the
generalization ability of the direct regression methods. For
example, the DispNet [3] fails the random dot stereo tests [8].

In contrast, the volumetric methods leverage the concept
of semi-global matching [9] and build a 4D feature volume
by concatenating features from each disparity-shift. To this
end, the volumetric methods often make use of two building
blocks, the so-called I. feature net and II. matching net. As
the names imply, the feature net extracts features from the
input images and the matching net compute matching costs
from the 4D feature volume with 3D convolutions. Different
designs of the feature net and the matching net form variants
of the volumetric networks [4, 10, 11, 6]. Nowadays, the volu-
metric methods represent the state-of-the-art in deep stereo
matching and top the leader-board across different benchmark
datasets. Despite the success, designing a good architecture
for volumetric methods remains an open question in deep
stereo matching.

On a separate line of research and to reduce the human
efforts in designing neural networks, Neural Architecture
Search (NAS) has mounted tremendous successes in various
high-level vision tasks such as classification [12, 13, 14], ob-
ject detection [15,16], and semantic segmentation [17,18,19].
Connecting the dots, one may assume that marrying the two
parties, ie.,employing NAS to design a volumetric method for
stereo matching, is an easy ride. Unfortunately this is not the
case. In general, NAS needs to search through a humongous
set of possible architectures to pick the network components
(e.g.,the filter size of convolution in a certain layer). This
demands heavy computational load (early versions of NAS
algorithms [20, 21] need thousands of GPU hours to find an
architecture on the CIFAR dataset [22]). Add to this, the
nature of volumetric methods are very memory hungry. For
example, the volumetric networks in [4, 10, 8, 23] require six
to eight Gigabytes of GPU memory for training per batch!
Therefore, end-to-end search of architectures for volumetric
networks has been considered prohibitive due to the explosive
of computational resource demands. This is probably why,
in the only previous attempt1, Saikia et al. [24] search the
architecture based on the direct regression methods, and they
only search partially three different cell structures rather than
the full architecture.

In this paper, we leverage the volumetric stereo matching
pipeline and allow the network to automatically select the
optimal structures for both the Feature Net and the Matching
Net. Different from previous NAS algorithms that only have
a single encoder / encoder-decoder architecture [17, 24, 19],
our algorithm enables us to search over the structure of both
networks, the size of the feature maps, the size of the feature
volume and the size of the output disparity. Unlike AutoDisp-
Net [24] that only searches the cell level structures, we allow
the network to search for both the cell level structures and
the network level structures, e.g.,the arrangement of the cells.
To sum up, we achieve the first end-to-end hierarchical NAS

1To the best of our knowledge.

framework for deep stereo matching by incorporating the geo-
metric knowledge into neural architecture search. We not only
avoid the explosion demands of computational resources in
searching architectures, but also achieve better performances
compared to naively searching an architecture in a very large
search space. Our method outperforms a large set of state-
of-the-art algorithms on various benchmarks (e.g.,topping all
previous studies on the KITTI and Middlebury benchmarks2

). This includes man-designed networks such as [23, 25] and
the NAS work of Saikia et al. [24], not only in accuracy but
also in inference time and the size of the resulting network
(as shown in Figure 1).

2 Our Method
In this section, we present our end-to-end hierarchical

NAS stereo matching network. In particular, we have bene-
fited from decades of human knowledge in stereo matching
and previous successful handcrafted designs in the form of
priors towards architecture search and design. By leveraging
task-specific human knowledge in the search space design,
we not only avoid the explosion demands of computational
resources in searching architectures for high resolution dense
prediction tasks, but also achieve better accuracy compared to
naively searching an architecture in a very large search space.

2.1 Task-specific Architecture Search Space
We recall that the deep solutions for dense prediction

(e.g.,semantic segmentation, stereo matching), usually opt
for an encoder-decoder structure [17, 24, 19]. Inspired by the
Auto-DeepLab [17] for semantic segmentation, we propose a
two-level hierarchical search that allows us to identify both
cell-level and network-level structures3. Directly extending
ideas from semantic segmentation might not necessarily lead
to viable solutions for stereo matching. A fully data-driven
U-shape encoder-decoder network is often hard to train, even
with the help of NAS [24] in regressing disparity maps. Volu-
metric stereo matching methods offer faster convergence and
better performance as their pipeline makes use of inductive
bias (ie.,human knowledge in network design). To be specific,
volumetric solutions first obtain a matching cost for all possi-
ble disparity levels at every pixel (based on the concepts of
3D geometry) and then use it to generate the disparity map
(e.g.,by using a soft-argmin operation). One obvious draw-
back here is the overwhelming size of the resulting network.
This, makes it extremely difficult, if not impossible, to use
volumetric solutions along the NAS framework.

In this work, we embed the geometric knowledge for
stereo matching into our network architecture search. Our
network consists of four major parts: a 2D feature net that
extracts local image features, a 4D feature volume, a 3D
matching net to compute and aggregate matching costs from

2At the time of submitting this draft, our algorithm, LEAStereo, is ranked
1 in the KITTI 2015, and KITTI 2012 benchmark, and ranked 1 according to
Bad 4.0, avgerr, rms, A95, A99 metrics on Middlebury benchmark.

3We would like to stress that our framework, in contrast to the Auto-
DeepLab, searches for the full architecture (Auto-DeepLab only searches for
the architecture of the encoder).

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://vision.middlebury.edu/stereo/eval3/
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Fig. 2: The pipeline of our proposed stereo matching network. Our network consists of four components: 2D Feature Net, 4D Feature
Volume, 3D Matching Net, and Projection Layer. Given a pair of stereo images, the Feature Net produces feature maps that are processed by
the Matching Net to generate a 3D cost volume. The disparity map can be projected from the cost volume with soft-argmin operation. Since
the Feature Net and the Matching Net are the only two modules that contain trainable parameters, we utilize the NAS technique to select the
optimal structures for them.

concatenated features, and a soft-argmin layer that projects
the computed cost volumes to disparity maps. Since only the
feature net and the matching net involve trainable parameters,
we leverage NAS technique to search these two sub-networks.
The overall structure of our network is illustrated in Figure 2.
More details about the cell and network level search are pre-
sented below.

2.1.1 Cell Level Search Space
A cell is defined as a core searchable unit in NAS. Fol-

lowing [26], we define a cell as a fully-connected directed
acyclic graph (DAG) with N nodes. Our cell contains two
input nodes, one output node and three intermediate nodes.
For a layer l, the output node is Cl and the input nodes are the
output node of its two preceding layers (ie.,Cl−2,Cl−1). Let
O be a set of candidate operations (e.g.,2D convolution, skip
connection). During the architecture search, the functionality
of an intermediate node s( j) is described by:

s( j) = ∑
i; j

o(i, j)
(
s(i)

)
. (1)

Here, ; denotes that node i is connected to j and

o(i, j)(x) =
ν

∑
r=1

exp
(

α
(i, j)
r

)
∑

ν
s=1 exp

(
α
(i, j)
s

)o(i, j)r (x) , (2)

with o(i, j)r being the r-th operation defined between the
two nodes. In effect, to identify the operation connecting
node i to node j, we make use of a mixing weight vector
α(i, j) = (α

(i, j)
1 ,α

(i, j)
2 , · · · ,α(i, j)

ν ) along a softmax function. At
the end of the search phase, a discrete architecture is picked
by choosing the most likely operation between the nodes.
That is, o(i, j) = o(i, j)r∗ ; r∗ = argmaxr α

(i, j)
r .

Unlike [26, 24], we only need to search one type of cells
for the feature and matching networks since the change of
spatial resolution is handled by our network level search.
DARTS [26] has a somehow inflexible search mechanism, in
the sense that nodes Cl−2,Cl−1,Cl are required to have the

same spatial and channel dimensionalities. We instead allow
the network to select different resolutions for each cell. To
handle the divergence of resolutions in neighbouring cells, we
first check their resolutions and adjust them accordingly by
upsampling or downsampling if there is a mismatch.

Residual Cell. Previous studies opt for concatenating the
outputs of all intermediate nodes to form the output of a
cell (e.g., [26, 17, 24]). We refer to such a design as a direct
cell. Inspired by the residual connection in ResNet [27], we
propose to also include the input of the cell in forming the
output. See Figure 3 where the residual connection cells
highlighted with a red line. This allows the network to learn
residual mappings on top of direct mappings. Hereafter, we
call this design the residual cell. We empirically find that
residual cells outperform the direct ones (see § 3.3).

Candidate Operation Selection. The candidate operations
for the feature net and matching net differ due to their func-
tionalities. In particular, the feature net aims to extract dis-
tinctive local features for comparing pixel-wise similarities.
We empirically observe that removing two commonly used
operations in DARTS, namely 1. dilated separable convolu-
tions and 2. the pooling layers does not hurt the performance.
Thus, the set of candidates operators for the feature net in-
cludes OF = { “3× 3 2D convolution”, “zero connection”,
“skip connection”}.

Similarly, we find out that removing some of the com-
monly used operations from the candidate set for the matching
net will not hurt the design. As such, we only include the
following operations for the matching net, OM = { “3×3×3
3D convolution”, “zero connection”, “skip connection”}. We
will shortly see an ablation study regarding this (see § 3.3).

2.1.2 Network Level Search Space
We define the network level search space as the arrange-

ment of cells, which controls the variations in the feature
dimensionality and information flow between cells. Drawing
inspirations from [17], we aim to find an optimal path within
a pre-defined L-layer trellis as shown in Figure 3. We associ-
ated a scalar with each gray arrow in that trellis. We use β to
represent the set of this scalar. Considering the number of fil-
ters in each cell, we follow the common practice of doubling
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Fig. 3: The proposed search space. We illustrate our cell level search space on the left and our network level search space on the right.
We set LF = 6 for Feature Net and LM = 12 for Matching Net.

the number when halving the height and width of the feature
tensor.

In the network level search space, we have two hyper-
parameters to set: I. the smallest spatial resolution and II.
the number of layers L. Empirically, we observe that setting
the smallest spatial resolution to 1/12 of the input images
work across a broad range of benchmarks and hence our
choice in here. Based on this, we propose a three-level trellis
with downsampling rates of {3,2,2}, leading to the smallest
feature map to be 1/12 of the input size (see Figure 3). At
the beginning of the feature net, we have a three-layer “stem”
structure, the first layer of it is a 3×3 convolution layer with
stride of three, followed by two layers of 3×3 convolution
with stride of one.

Turning our attention to the the number of layers L, we
have empirically observed that choosing LF = 6 for the fea-
ture net and LM = 12 for the matching net provides a good
balance between the computational load and performance of
the network. This is interestingly much smaller than some
recent developments in hand-crafting deep stereo matching
networks. For example, GA-Net [23] uses 33 convolutional
layers with an hourglass structure to extract features.

Similar to finding the best operation between the nodes,
we will use a set of search parameters β to search over the
trellis in order to find a path in it that minimizes the loss. As
shown in Fig 3, each cell in a level of the trellis can receive
inputs from the preceding cell in the same level, one level
below and one level above (if any of the latter two exists).

2.2 Loss Function and Optimization
Since our network can be searched and trained in an end-

to-end manner, we directly apply supervisions on the output
disparity maps, allowing the Feature Net and the Matching
Net to be jointly searched. We use the smooth `1 loss as
our training loss function as it is considered to be robust to
disparity discontinuities and outliers. Given the ground truth
disparity dgt , the loss function is defined as:

L = `(dpred−dgt), where `(x) =
{

0.5x2, |x|< 1,
|x|−0.5, otherwise.

(3)

After continuous relaxation, we can optimize the weight
w of the network and the architecture parameters α,β through
bi-level optimization. We parameterize the cell structure and
the network structure with α and β respectively. To speed up
the search process, we use the first-order approximation [17].

To avoid overfitting, we use two disjoint training sets
trainI and trainII for w and α,β optimization respectively.
We do alternating optimization for w and α,β:

A.Update network weights w by ∇wL(w,α,β) on trainI
B.Update architecture parameters α,β by ∇α,βL(w,α,β)
on trainII

When the optimization convergence, we decode the dis-
crete cell structures by retaining the top-2 strongest operations
from all non-zero operations for each node, and the discrete
network structures by finding a path with maximum probabil-
ity [17].

3 Experiments
In this section, we adopt SceneFlow dataset [3] as the

source dataset to analyze our architecture search outcome. We
then conduct the architecture evaluation on KITTI 2012 [28],
KITTI 2015 [29] and Middlebury 2014 [30] benchmarks by
inheriting the searched architecture from SceneFlow dataset.
In our ablation study, we analyze the effect of changing search
space as well as different search strategies.

3.1 Architecture Search
We conduct full architecture search on SceneFlow

dataset [3]. It contains 35,454 training and 4370 testing syn-
thetic images with a typical image dimension of 540×960.
We use the “finalpass” version as it is more realistic. We
randomly select 20,000 image pairs from the training set as
our search-training-set, and another 1,000 image pairs from
the training set are used as the search-validation-set follow-
ing [17].

Implementation We implement our LEAStereo network in
Pytorch (the code will be publicly released). Random crop
with size 192×384 is the only data argumentation technique
being used in this work. We search the architecture for a total
of 10 epochs: the first three epochs to initiate the weight w of
the super-network and avoid bad local minima outcome; the
rest epochs to update the architecture parameters α,β. We use
SGD optimizer with momentum 0.9, cosine learning rate that
decays from 0.025 to 0.001, and weight decay 0.0003. The
entire architecture search optimization takes about 10 GPU
days on an NVIDIA V100 GPU.



3.2 Benchmark Evaluation
SceneFlow dataset We evaluate our LEAStereo network
on SceneFlow [3] test set with 192 disparity level. We use
average end point errors (EPE) and bad pixel ratio with 1 pixel
threshold (bad 1.0) as our benchmark metrics. In Table 1, we
can observe that LEAStereo achieves the best performance
using only near one third of parameters in comparison to
the SOTA hand-crafted methods (e.g., [6]). Furthermore, the
previous SOTA NAS-based method AutoDispNet [24] has
20× more parameters than our architecture. We show some
of the qualitative results in Figure 4.

Methods Params [M] EPE [px] bad 1.0 [%] Runtime [s]

GCNet [4] 3.5 1.84 15.6 0.9

iResNet [5] 43.34 2.45 9.28 0.2

PSMNet [10] 5.22 1.09 12.1 0.4

GANet-deep [6] 6.58 0.78 8.7 1.9

AutoDispNet [24] 37 (1.51) - 0.9

LEAStereo 1.81 0.78 7.82 0.3

Table 1: Quantitative results on Scene Flow dataset. Our method
achieves state-of-the-art performance with only a fraction of param-
eters.

KITTI benchmarks As shown in Table 2 and the leader
board, our LEAStereo achieves top 1 rank among other hu-
man designed architectures on KITTI 2012 and KITTI 2015
benchmarks. Figure 5 provides some visualizations from the
testsets. It is worth noting that our method is 32.12% bet-
ter than AutoDispNet-CSS [24] with only 1.81M parameters
(which is 1.7% of the parameters required by AutoDispNet-
CSS!).

Middlebury 2014 Middlebury 2014 is often considered to
be the most challenging dataset for deep stereo networks
due to restricted number of training samples and also the high
resolution imagery with many thin objects. The full resolution
of Middlebury is up to 3000×2000 with 800 disparity levels
which is prohibitive for most deep stereo methods. This has
forced several SOTA [10, 31] to operate on quarter-resolution
images where details can be lost. In contrast, the compactness
of our searched architecture compactness allows us to use
images of size 1500×1000 with 432 disparity levels.

In Table 3, we report the latest benchmark of volumetric
based stereo matching method [10] and direct regression ap-
proaches [5, 25] for comparisons. Our proposed LEAStereo
achieves the state-of-the-art rank on various metrics (e.g.,bad
4.0, all) among more than 120 stereo methods from the leader
board.

3.3 Ablation Study
In this part, we perform ablation studies using the Scene-

Flow dataset [3] to justify “hyper-parameters” of our algo-
rithm. In particular, we look into the candidate operations
O, differences between the residual and the direct cells, joint-

search vs. separate-search of the Feature Net and the Match-
ing Net, and functionality analysis for each sub-net.

Candidate Operations Here we evaluate two sets of can-
didate operations Olarge and Oours. The Olarge consists of
8 operations including various types of convolution filters,
pooling and connection mechanisms that are commonly used
in [26, 17, 24]4. The Oours as described in § 2.1.1 only con-
tains 3×3 convolution, skip connection and zero connection.
For the Matching Net, we simply use the 3D variants of these
operations. As shown in the first two rows of Table 4, larger
set of operations pool Olarge leads to a searched architecture
with a much lower number of parameters but poor EPE per-
formance when compared to Oours. The reason is that the
algorithm favors skip connections in its design, leading to
a low-capacity architecture. Similar observations, albeit in
another context, are reported in [33].

Joint-search vs. Separate-search To analyze the effective-
ness and efficiency of joint-search vs. separate-search, we
report their performances on SceneFlow dataset with O and
connection type fixed. From the metrics of row 2 and 4 in
Table 4, we observe that joint-search outperforms separate-
search by an improved margin of 9.30% for EPE and 10.50%
reduction on the number of parameters. We conjecture that
the joint-search increases the capacity and compatibility for
both Feature Net and Matching Net.

Residual cell vs. Direct cell We then study the differences
between our proposed residual cell and direct cell. As shown
in the last two rows of Table 4, using residual cell slightly
generates more parameters and FLOPs but increase the per-
formance by 14.29%.

Functionality analysis for each sub-net The Feature Net
and the Matching Net own different roles in stereo match-
ing. The Feature Net is designed to extract distinctive fea-
tures from stereo pairs while the Matching Net is to compute
matching costs from these features. To analyze and reflect the
actual behaviour of each searched sub-net, we use the features
from the Feature Net to directly compute a cost volume with
dot products [2] and project it to a disparity map with the
Winner-Takes-All (WTA) strategy. As shown in Figure 7, this
strategy already achieves a reasonably good result in correctly
estimating disparity for most objects, which demonstrates
that our Feature Net is learning discriminative features for
stereo matching. The difference between the third and fourth
sub-figures (before and after the Matching Net) proves the
contribution of the Matching Net in computing and aggregat-
ing the matching costs to achieve much better results.

4 Related Work
Deep Stereo Matching MC-CNN [2] is the first deep learn-
ing based stereo matching method. It replaces handcrafted fea-
tures with learned features and achieves better performance.

4Namely, Olarge contains 3×3 and 5×5 depth-wise separable convolu-
tions, 3×3 and 3×3 dilated separable convolutions with dilation factor 2,
skip connection, 3×3 average pooling, 3×3 max pooling and zero connec-
tion.

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
http://vision.middlebury.edu/stereo/eval3/
http://vision.middlebury.edu/stereo/eval3/
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Fig. 4: Qualitative comparison on the SceneFlow dataset.

KITTI 2012 KITTI 2015

Methods bad 2.0 [%] bad 3.0 [%] Refl [%] Avg All [px] Noc-FG [%] Noc-Avg All [%] FG [%] Avg All [%]

GCNet [4] 2.71 1.77 10.80 0.7 5.58 2.61 6.16 2.87

PSMNet [10] 2.44 1.49 8.36 0.6 4.31 2.14 4.62 2.32

GANet-deep [6] 1.89 1.19 6.22 0.5 3.39 1.84 3.91 2.03

DispNetC [3] 7.38 4.11 16.04 1.0 3.72 4.05 4.41 4.34

AutoDispNet-CSS [24] 2.54 1.70 5.69 0.5 2.98 2.00 3.37 2.18

LEAStereo 1.90 1.13 5.35 0.5 2.65 1.51 2.91 1.65

Table 2: Quantitative results on the KITTI 2012 and 2015 benchmark. Bold indicates the best.
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Fig. 5: Qualitative results on KITTI 2012 and KITTI 2015 benchmarks.

Methods bad 2.0 [%] bad 4.0 [%] Ave Err [px] RMSE [px] A90 [px] A95 [px]

nonocc all nonocc all nonocc all nonocc all nonocc all nonocc all

PSMNet [10] 42.1108 47.2104 23.597 29.294 6.6869 8.7843 19.450 23.322 17.077 22.851 31.365 43.432

iResNet [5] 22.962 29.561 12.655 18.549 3.3130 4.677 11.38 13.96 6.6149 10.624 12.537 20.77

AANet [25] 15.444 22.040 10.845 16.442 6.3766 9.7749 23.573 29.442 7.5556 29.358 48.880 76.163

HSM [32] 10.226 16.519 4.8317 9.688 2.072 3.442 10.34 13.43 2.1220 4.265 4.326 17.64

LEAStereo 7.1510 12.15 2.751 6.331 1.431 2.891 8.111 13.75 1.688 2.621 2.651 6.351

Table 3: Quantitative results on the Middlebury 2014 Benchmark. Bold indicates the best. The red number on the top right of each
number indicates the actual ranking on the benchmark.

Left image HSM [32] HSM [32] bad 4.0 LEAStereo LEAStereo bad 4.0

Fig. 6: Qualitative results on Middlebury 2014 Benchmark.

DispNet [3] is the first end-to-end deep stereo matching ap-
proach. It tries to directly regress the disparity maps from
stereo pairs. The overall architecture is a large U-shape

encoder-decoder network with skip connections. Since it
does not leverage on pre-acquired human knowledge in stereo
matching, this network is totally data-driven, and requires



Left image GT Feature Net result Full Network result

Fig. 7: Functionality analysis for the Feature Net and the Matching Net. By using the learned features from the Feature Net directly,
we already achieve reasonably good results as shown in the third sub-figure. After applying the Matching Net, we could further improve the
results significantly as evidenced by the gap between the third and fourth sub-figures.

Architecture Variant Achieved Network

Olarge Oours Sepa. Join. Direct Residual Params FLOPS EPE

√ √ √
0.68M 682.8G 1.55px

√ √ √
2.00M 782.4G 0.86px

√ √ √
1.52M 538.9G 0.91px

√ √ √
1.81M 782.2G 0.78px

Table 4: Ablation Studies of different searching strategies. The
input resolution is 576×960, and EPE is measured on total Scene-
Flow test set.

large training data and often hard to train. GC-Net [4] used
a 4D feature volume to mimic the first step of conventional
stereo matching pipeline and a soft-argmin process to mimic
the second step. By encoding such human knowledge in net-
work design, training becomes easier while maintaining high
accuracies. Similar to our work, GC-Net also consists of two
sub-networks to predict disparities. GA-Net [32] proposes
a semi-global aggregation layer and a local guided aggre-
gation layer to capture the local and the whole-image cost
dependencies respectively. Generally speaking and as alluded
to earlier, designing a good structure for stereo matching is
very difficult, despite considerable effort put in by the vision
community.

Neural Architecture Search for Dense Predictions
Rapid progress on NAS for image classification or object
detection has been witnessed as of late. In contrast, only a
handful of studies target the problem of dense predictions
such as scene parsing, and semantic segmentation. Pioneer
works [34,35] propose a super-net that embed a large number
of architectures in a grid arrangement and adopt them for the
task of semantic segmentation. To deal with the explosion of
computational demands in dense prediction, Chen et al. [36]
employ a handcrafted backbone and only search the decoder
architecture. Rather than directly searching architectures on
large-scale dense prediction tasks, they design a small scale
proxy task to evaluate the searching results. Nekrasov et
al. [37] focus on the compactness of a network and utilized a
small-scale network backbone with over-parameterised auxil-
iary searchable cells on top of it. Similarly, Zhang et al. [18]
penalized the computational demands in search operations,
allowing the network to search an optimized architecture
with customized constraints. Auto-Deeplab [17] proposes a
hierarchical search space for semantic segmentation, allow-
ing the network to self-select spatial resolution for encoders.

FasterSeg [19] leverages on the idea of [18] and [17], and
introduces multi-resolution branches to the search space to
identify an effective semantic segmentation network. Au-
toDispNet [24] applies NAS to disparity estimation by search-
ing cell structures for a large-scale U-shape encoder-decoder
structure.

5 Conclusion
In this paper, we proposed the first end-to-end hierarchi-

cal NAS framework for deep stereo matching, which incor-
porates task-specific human knowledge into the architecture
search framework. Our search framework follows the feature
net-feature volume-matching net pipeline, whereas we could
optimize the architecture of the entire pipeline jointly. Our
proposed method significantly reduces the search space while
improving the interpretability of the resulting network. Our
searched network outperforms all state-of-the-art deep stereo
matching architectures (handcrafted and NAS searched) and
is ranked at the top 1 accuracy on KITTI stereo 2012, 2015
and Middlebury benchmarks while showing substantial im-
provement on the network size and inference speed. In the
future, we plan to extend our search framework to other dense
matching tasks such as optical flow estimation and multi-view
stereo.
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